
Custom Capsim® 1

Custom CAPSIM®

Developing and Adding Models to Capsim

Capsim Buffers

Creating New Buffer Types

Silicon DSP Corporation

http://www.silicondsp.com

Custom Capsim® 2

Copyright (c) 1989-2007 Silicon DSP Corporation
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the
section entitled "GNU Free Documentation License".

Custom Capsim® 3

Table of Contents

Custom Capsim® ___ 4
1 Introduction ___ 4
2 Writing Models For Capsim __ 5

2.1 Introduction __ 5
2.2 XSLT blockgen.xsl Input and Output Files __________________________________ 7
2.3 Block XML Structure __ 8
2.4 #Include and #Define ___ 9
2.5 The C Program ___ 10
2.6 Types of Variables in Blocks __ 11
2.7 Passing Parameters ___ 13
2.8 Specifying Input and Output Buffer Names _________________________________ 14
2.9 Available Functions in User BLOCK Code __________________________________ 17
2.10 Example Block Development __ 20

2.10.1 Introduction ___ 20
2.10.2 A Single Input, Single Output Block (convolve.s) __________________________________ 20
2.10.3 Auto Fan-in and Fan-out Blocks ___ 26
2.10.4 The Null Block ___ 33
2.10.5 Probe Blocks __ 36

2.11 Template BLOCK ___ 41
2.12 Tips and Hints in Writing Blocks ___ 41

3 Adding Your Blocks to CAPSIM __ 44
3.1 Precapsim and Makefile __ 44
3.2 BLOCK MAINTENANCE ___ 47

4 CAPSIM Buffers ___ 49
4.1 Introduction __ 49
4.2 Buffer Implementation ___ 49
4.3 Using and Creating Buffer Types __ 53

4.3.1 Simple Buffers __ 53
4.3.2 Buffer Types and How to Use Them ___ 56
4.3.3 Defining New Buffer Types __ 61

4.4 Buffer Size Management ___ 64
5 Appendix A ___ 66
6 Appendix B ___ 69
7 Appendix C ___ 72

Custom Capsim® 4

Custom Capsim®

1 Introduction

 One of the most important features of Capsim is that users can add
their own models, written in C code, to create a custom version of Capsim.
The models can then be used within simulations just like models supplied
with Capsim. In addition, users can use all of Capsim's facilities, such as
parameters, probes, etc. to test and evaluate a model as it is being
developed. Since Capsim is supplied with a variety of blocks, a user can
easily find a block that is close to the functionality that they desire. They
can then use it as a template and rapidly incorporate their model into
Capsim. Capsim is also supplied with TK/TCL tools that generate block
code using a graphical interface.

 This manual gives a detailed description of the procedures used to
create a variety of blocks. There are blocks that can have an arbitrary
number of inputs and outputs. Some blocks need only one input and one
output. Probe blocks pass all input samples to output buffers if they exist.
Some blocks may output diagnostic data to a buffer if it is connected. The
examples provided will quickly launch you into writing models for
Capsim to suite your requirements.

 We will also describe the various buffer types supported in Capsim
including how you can add your own buffer type. For example, you may
wish to send data packets instead of floating point numbers between
blocks. You may send pointers to images for example. Furthermore,
blocks can be written such that they can operate on selectable buffer types.

Custom Capsim® 5

For example, the spectrum probe should be able to accept fixed point,
floating point, or complex data.

 Finally, we will describe issues associated with buffers and their
growth. With Capsim version 3.5 you can specify the number of cells
allocated to a buffer. This is called a segment. This has certain
implications. If this number is too small, then simulations may run slower,
yet use less memory. If it is too large, then memory is wasted. An ideal
value will speedup the simulation while keeping memory usage low.
Furthermore, another parameter controls the number of segments used in
buffers before the simulation stops due to excessive memory use. Buffers
may grow very large in some multi-rate simulations. This growth can be
eliminated by following rules to be described. Capsim is one of the most
efficient simulation environments for multirate signal processing. Buffer
growth can be controlled and bounded using pacers described in a Capsim
application note.

2 Writing Models For Capsim

2.1 Introduction

User block functions, in addition to implementing the functionality of a
simulation, must do a number of things to effect the interface to Capsim,
"including accepting arguments, allocating storage for state variables,
checking the size of parameter storage and the number of input and output
buffers, defaulting parameter values and initializing state variables, etc."1
precapsim.sh is a script that provides for the adding of blocks to the
Capsim library. precapsim takes the source code of a block and adds it to
the Capsim library, creating a new personalized version of Capsim. In
Capsim, we combine precapsim and the UNIX make facility along with
PERL and Java to automate the whole process.

This chapter will outline what is involved in writing a block and then
adding it to the library. In order to write a block the user must use the
blockgen.xsl XSLT script which is processed by the Java program

(1) D. J. Hait and D. G. Messerschmitt, BLOSIM Reference Manual, UC Berkeley

Custom Capsim® 6

saxon.jar to produce the block C code from the block XML code. This
chapter includes some sections from the original paper by Messerschmitt.

In Capsim V6 all blocks are written in XML with embedded C code. Tools
are provided to generate HTML documentation and C code from the
XML code.

Custom Capsim® 7

2.2 XSLT blockgen.xsl Input and Output Files

Blockgen.xsl is an XSLT2 (Extensible Stylesheet Language for
Transformations) preprocessor for user block functions which allows the
user to express many of the interface parameters in a form similar to and
compatible with the topology specification, and then turns this
specification into C code for compilation and execution. In the following
sections a number of XML syntax rules will be discussed. Users do not
need to be familiar with XSLT.

The file provided to blockgen.xsl must have a ".s" postfix; that is, be of
the form "name.s". blockgen.xsl generates a C program in a file called
"name.c" which contains the C function name() which is the
corresponding user BLOCK function.

SAXON Java
XSLT Processor

Block Code
(XML)

blockname.s

blockgen.xsl
(XSLT)

Block C Code
(C)

blockname.c

SAXON Java
XSLT Processor

Block Code
(XML)

blockname.s

blockhtml.xsl
(XSLT)

Block Documentation
(HTML)

blockname.html

2 Doug Tidwell, XSLT, O’Reilly, 2001

Custom Capsim® 8

Figure 1

2.3 Block XML Structure

Blocks in Capsim are written in XML and are parsed by XSLT processor
and transformed to C code. Each block has the following sections:

1- <BLOCK> and </BLOCK> which is the root element.
2- <LICENSE> This section contains the text of the block license.

For example the GNU public license.
3- <BLOCK_NAME> Contains the name of the block. The generated

C code function name is defined here.
4- < DESC_SHORT > A short description of the block. This will be

used in the HTML documentation of the block.
5- <COMMENTS> Comments will appear in the generated C code.
6- <INCLUDES> Contains all #includes that are included in the

generated C code.
7- <DEFINES> Contains all the #defines that are included in the

generated C code.
8- <PARAMETERS> Contains the definition of the block

parameters.
9- <STATES> Contains the definition of state variables for the block .
10- <INPUT_BUFFERS> The definition of input buffers if present.
11- <OUTPUT_BUFFERS> The definition of output buffers if

present.
12- <DECLARATIONS> C declarations that are copied as is to the

generated C code.
13- <INIT_CODE> This is the user initialization code. It is C code that

is executed once. For example to allocate space, open files (with
pointers that are states), to design filters base on parameters etc.

14- <MAIN_CODE> This is the C code that is executed as long as
samples are available to process in the buffers. This is is the main
processing code.

15- <WRAPUP_CODE> This is the C code that is executed once
when the simulation is done (for example to store results in a file,
close file pointers, free up memory).

Custom Capsim® 9

Since XML is ASCII text it is easy to edit the XML block code directly to
make changes to blocks. There are graphical tools available in Capsim that
automatically generate the XML code for custom blocks.

The block structure which is enforced in Capsim greatly enhances the
readability and understanding of the blocks. The modular structure allows
common interface and re-usability. In addition XML allows for the block
code to be transformed to C, HTML or even Java and SystemC code.

2.4 #Include and #Define

All includes must be with the XML tag <INCLUDES>:

<INCLUDES>
<![CDATA[

#include <math.h>
#include <stdio.h>
#include "someheader.h"

]]>
</INCLUDES>

By enclosing the includes within “<![CDATA[“ and “]]> “ the “<”
and “>” do not cause a problem for the XML parser. The Tk/TCL Block
generator graphical interface automatically generates the XML tags.

Defines are added to the XML tags <DEFINES>:

<DEFINES>

#define PI 3.1415926535898
#define PEAK_WINDOW 16

</DEFINES>

Note if the #defines include the “<”and “>” symbols enclose them with
“<![CDATA[“ and “]]> “.

Custom Capsim® 10

The files <stdio.h> and <math.h> are automatically included by
blockgen.xsl, and hence do not need to be included by the user.

2.5 The C Program

The user must of course provide, in the input file (".s" file), the C program
which implements the functionality of the user BLOCK function. This C
program generally includes four parts:

1. Declarations of variables.

2. Initialization code which is to be executed the first time the user

BLOCK routine is called by CAPSIM.

3. The main body of code which is executed every time the user BLOCK

function is called. This code accesses the buffers and processes the
samples.

4. Wrapup code which is executed only when the simulation has finished.

Since blockgen.xsl automatically generates the initialization code for
checking the number of buffers, checking the number of parameters and
their types, defaulting the parameters, and allocating storage for state
variables and initializing them, many user BLOCK routines will not
require any additional initialization code or wrapup code

blockgen.xsl recognizes the following types of code because they are
imbedded between XML tags.

In particular, declarations of variables are imbedded between the lines:

<DECLARATIONS>
</DECLARATIONS>

State variables are declared with in the tags:

<STATES>
</STATES>

Custom Capsim® 11

The parameters that are used to control the program are designated in the
tags:

<PARAMETERS>
</PARAMETERS>

The buffers used to communicate between blocks are defined in the
sections:

<INPUT_BUFFERS>
</INPUT_BUFFERS>

<OUTPUT_BUFFERS>
</OUTPUT_BUFFERS>

The initialization code is imbedded between the lines:

<INIT_CODE>
</INIT_CODE>

The main code is placed between the lines:

<MAIN_CODE>
</MAIN_CODE>

The wrapup code is imbedded between the lines:

<WRAPUP_CODE>
</WRAPUP_CODE>

We will now discuss the each of these sections.

2.6 Types of Variables in Blocks

CAPSIM works by calling the blocks in a given simulation one at a time,
processing any data on the block's buffer and then calling on the next
block. For this reason there are two types of variables available:
declarations and states. The difference between these two types of

Custom Capsim® 12

variables is that a state's value is saved between calls of the block. While
a declaration's value is not saved between calls.

Declarations are often used to store temporary values such as counters or
dummy variables. A typical section of code would look like:

<DECLARATIONS>
 type variable_name
</DECLARATIONS>

Where type is any standard C type such as int, float, FILE, char, etc.
Variable_name is the name of the variable. You may declare as many
variables as you need in this section. The declarations look exactly as they
would in a C program.

Examples of declarations are:

<DECLARATIONS>
 float temp, dummy;
 float zz;
 int i, j;
 char name;
</DECLARATIONS>

The state variables are enclosed in the following tags:

<STATES>
</STATES>

Each individual state variable is enclosed in the tags,
<STATE>
</STATE>

Each state has a name, a type, and a default value:

<STATES>

<STATE>
 <TYPE> complex* </TYPE>
 <NAME> h_P </NAME>
</STATE>
<STATE>
 <TYPE> int </TYPE>
 <NAME> limit </NAME>
 <VALUE> 100 </VALUE>
</STATE>
<STATE>
 <TYPE> FILE* </TYPE>
 <NAME> fp </NAME>

Custom Capsim® 13

</STATE>

</STATES>

For each state element the state <NAME> is an identifier for the state
variable which will be used in the program, and <TYPE> is the type of the
variable (float, int, FILE*, float*, complex* etc.) which must not contain
any blanks (note the absence of blanks between FILE and * for instance),
and <VALUE> is the initial value the state variable is to assume, which can
be either a constant or the name of a parameter.

2.7 Passing Parameters

The only parameters which can be passed are integers, floating point
numbers, strings and arrays.

Parameters are passed to the BLOCK by including their names and types
and default values in XML tags enclosed in the XML parameter tags:

<PARAMETERS>
</PARAMETERS>

Individual parameters are defined by the tags:

<PARAMETER>
</PARAMETER>

Each parameter must have a name and type with optional definition and
default value. An example follows:

<PARAMETERS>
 <PARAM>
 <DEF> Number of samples in sequence
</DEF>
 <TYPE> int </TYPE>
 <NAME> N </NAME>
 <VALUE> 64 </VALUE>
 </PARAM>
 <PARAM>
 <DEF> File name containing sequence</DEF>
 <TYPE> file </TYPE>
 <NAME> filename </NAME>
 <VALUE> </VALUE>
 </PARAM>

Custom Capsim® 14

 <PARAM>
 <DEF> Ratio threshold </DEF>
 <TYPE> float </TYPE>
 <NAME> ratioThreshold </NAME>
 <VALUE> 5.0 </VALUE>
 </PARAM>
 <PARAM>
 <DEF> Array of weights </DEF>
 <TYPE> array </TYPE>
 <NAME> myarray </NAME>
 </PARAM>

</PARAMETERS>

<TYPE> is the identification of the type of parameter. There are presently
five possibilities for type which are specifically int, float, file, function,
string and array. Parameter <NAME> is the identifier of the parameter
as it is referred to in the initialization and main C code. Default_<VALUE>
is a constant which is the value of the parameter if it is not set by the user
in the topology description. Note that the array parameter type does not
support default values. If you use a parameter array, the size and initial
values must be set in the topology file. (This is enforced by the Capsim
program.)

In the above example, for the first case the parameter is not given a
default value (in this example) and hence must be specified in the
topology routine. The user will be prompted with the string "Enter the
number of samples in sequence" upon typing the chp command. In the
last case with arrays, note that no "brackets" or dimensioning should be
used, and no default values can be given. This must be done in the
topology file. The array values can be changed freely within the block
program, however. Also, an integer variable containing the size of the
array will be automatically declared for use within the block program. Its
name will be assigned as the array name with prefix "n_"; thus in the
example above, an integer "n_myarray" will be declared and initialized
with the size of "myarray".

2.8 Specifying Input and Output Buffer Names

Custom Capsim® 15

The input and output buffers are a block's only connection with the rest of
the blocks in a simulation. A block may have any number of input and
output buffers, from zero on up. The buffers are specified in a special
section of XML code:

<INPUT_BUFFERS>
 <BUFFER>
 <TYPE> float </TYPE>
 <NAME> x </NAME>
 </BUFFER>
</INPUT_BUFFERS>

<OUTPUT_BUFFERS>
 <BUFFER>
 <TYPE> float </TYPE>
 <NAME> y </NAME>
 </BUFFER>
 <BUFFER>
 <TYPE> float </TYPE>
 <NAME> z </NAME>
 </BUFFER>
</OUTPUT_BUFFERS>

In the above example the block has a floating point input buffer “x” and
two floating point output buffers “y” and “z”. <TYPE> is the type of
variable, either float , int, complex or a custom buffer type. <NAME> is
the name of the buffer as referred to in the main program.

<INPUT_BUFFERS>

 <BUFFER>
 <TYPE> float </TYPE>
 <NAME> x </NAME>
 <DELAY>
 <TYPE>max</TYPE>
 <VALUE_MAX> delay_value </VALUE_MAX>
 </DELAY>
 <DELAY>
 <TYPE>min</TYPE>
 <VALUE_MIN> delay_value </VALUE_MIN>
 </DELAY>

 </BUFFER>

</INPUT_BUFFERS>

<OUTPUT_BUFFERS>

 <BUFFER>
 <DELAY>
 <TYPE>max</TYPE>
 <VALUE_MAX> delay_value </VALUE_MAX>

Custom Capsim® 16

 </DELAY>
 <TYPE> float </TYPE>
 <NAME> y </NAME>
 </BUFFER>

</OUTPUT_BUFFERS>

In these statements, delay_value is either an integer constant, or an integer
variable which is an input parameter. <TYPE> is the type of variable,
either float or int, and <NAME> is the name of the buffer as referred to in
the main program. For <DELAY> of <TYPE> min it is the number of
samples in the past that a block considers the present. This allows the user
to build a delay into the buffer structure (as opposed to using a delay
block). The default is zero. For <DELAY> of <TYPE> max it is the largest
number of samples that a block can access into the past. The default for
an input buffer is delay_min. The default for an output buffer is zero.

An explanation of how to access the buffers in the programming of a
block are given in the next section.

Note that the delay statements are unnecessary if only current buffer
samples are referenced. (See next section's descriptions of set_dmin_in
etc.) If used, these statements must be placed just prior to their respective
buffer name declaration.

Custom Capsim® 17

2.9 Available Functions in User BLOCK Code

The following functions are available in writing your own blocks. These
functions involve the handling of the input and output buffers. These
functions may appear in the initialization code, the main code, or the
wrapup code.

AVAIl(buffer_no) returns the number of samples to be read on input
buffer buffer_no. The buffers are numbered in the order of their
declaration. The first buffer is 0, the second buffer is 1, etc.

MIN_AVAIL() returns the minimum number of samples available on all
the input buffers. This statement performs an AVAIL(buffer_no) on each
buffer and returns the smallest of these values.

IT_IN(buffer_no) increments time on the input buffer number buffer_no
and returns the number of samples that were available in the buffer before
the increment. If it was not possible to increment time (no more samples
available), then IT_IN(buffer_no) does nothing and returns 0. Note that
time 0 is always the present, time 1 is the previous sample, etc.

IT_OUT(buffer_no) increments time on output buffer number buffer_no
and returns a 1 if the buffer has overflowed. Specifically, IT_OUT()
allocates a new sample on the output buffer, which becomes the sample
with delay 0. Buffer overflow indicates that the maximum number of
segments (each segment 128 cells by default) has been exceeded. You
should check IT_OUT() and if it is true you should return a non zero error
code. Use the following code:
 if(IT_OUT(bufferNumber)) {
 KrnOverflow("blockname",bufferNumber);
 return(99);
 }
You can actually continue processing by returning a zero so that no more
samples are placed on the buffer. In this case save the sample to be
outputed and output it the next time the block is called. By then, the other
blocks will have consumed the samples in the buffer and space will be
available to place the previous sample. Note that this technique will only
work if all blocks are written this way. Otherwise, just return the error
code 99 along with a call to KrnOverflow to report an error message. You
can either increase the maximum segments using the Capsim line
command:
 setmaxseg MAX_SEGMENTS

Custom Capsim® 18

where MAX_SEGMENTS is 1000 by default. Or, you can be wise and use
pacers or other techniques to prevent buffer overflow by proper design.
Buffer overflow only occurs when mult-rate sampling is used.

NO_INPUT_BUFFERS() and NO_OUTPUT_BUFFERS() return
respectively the number of input and output buffers connected to the
BLOCK by the topology definition.

Normally the user refers to input and output buffers by name, as if they are
floating point numbers. Thus, if "sample" is the name of an output buffer,
then the last output sample would be referred to as sample(0) and the
output sample delay in the past would be referred to as sample(delay). A
new output sample would be generated by calling IT_OUT(buffer_no) and
then referring to the new sample being generated as sample(0). Similarly,
the output sample delay samples in the past would be referred to as
sample(delay).

However, in the case of buffers which do not store floating values, or
where there are a variable number of buffers, the following routines are
available to manipulate buffers.

POUT(buffer_no,delay) returns a pointer to the sample delay in the past
for output buffer number buffer_no.

PIN(buffer_no,delay) returns a pointer to the sample delay in the past for
the input buffer number buffer_no.

OUTF(buffer_no,delay) and inf(buffer_no,delay) return not a pointer to a
sample, but rather actual floating point values. They of course assume the
buffer is passing floating point numbers.

OUTI(buffer_no,delay) and INI(buffer_no,delay) return not a pointer to a
sample, but rather actual integer values. They of course assume the buffer
is passing integer numbers.

SET_DMIN_IN(buffer_no,delay_min) is a routine which sets the
minimum delay relative to the current input sample for the input buffer
number buffer_no to the value delay_min an integer constant or parameter
name. The value of this minimum delay defaults to zero, so if the BLOCK
will access the current sample it is unnecessary to call this function.

SET_DMAX_IN(buffer_no,delay_max) and
SET_DMAX_OUT(buffer_no,delay_max) set respectively the maximum
delay relative to the current sample of an input buffer and the maximum

Custom Capsim® 19

delay relative to the latest output sample for an output buffer with which
the buffer is accessed to delay_max which is an integer constant or
parameter name. The maximum delay, in the case of an input buffer,
defaults to be the same as the minimum delay. In the case of an output
buffer, it defaults to zero.

SET_CELLSIZE_IN(buffer_no,size) and
SET_CELLSIZE_OUT(buffer_no,size) are routines which set the size of
one cell in the buffer to a fixed integer This value defaults to the
appropriate size for a floating value, and does not need to be set for that
case. But for example if the buffer transmits integer values, then size
would be replaced by sizeof(int).

SNAME(buffer_no)
This macro returns a string which contains the signal name associated with
the input buffer. This is useful in probe blocks, which may use the string
to identify a plot or a legend in a plot.

Now that we have seen all the functions used in developing a block lets
take a look at a few examples.

Custom Capsim® 20

2.10 Example Block Development

2.10.1 Introduction

This section will discuss what is involved in writing your own blocks for
CAPSIM. It will proceed by presenting three blocks: convolve.s, node.s
and add.s. Each of these blocks will bring out different aspects of block
programming.

2.10.2 A Single Input, Single Output Block (convolve.s)

If convolve.s does not exist in your library, it will be beneficial for you to
either type it in or obtain a copy of it. The source for convolve.s is shown
in Fig. 3. In this figure certain sections of the code are highlighted for
purpose of discussion, they do not actually appear this way in the block
file.

Convolve
0 0

Figure 2 Convolve Block

Custom Capsim® 21

<BLOCK>
<LICENSE>
/* Capsim (r) Text Mode Kernel (TMK) Star Library (Blocks)
 Copyright (C) 1989-2002 XCAD Corporation

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later
version.

 This library is distributed in the hope that it will be
useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General
Public
 License along with this library; if not, write to the Free
Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

 http://www.xcad.com
 XCAD Corporation
 Raleigh, North Carolina */
</LICENSE>
<BLOCK_NAME> convolve </BLOCK_NAME>

<COMMENTS>
<![CDATA[

/* convolve.s */
/***

 convolve()
**

This star convolves the input samples with the impulse response
(finite
duration, FIR) given in a file.
Param: 1 - (file) File with the impulse response samples
 2 - (int) N number of samples in the impulse response.

This star convolves the input samples with the impulse response
(finite
duration, FIR) given in a file.
Param: 1 - (file) File with the impulse response samples
 2 - (int) N number of samples in the impulse response.

Date: September 23, 1988
Programmer: Adali Tulay

Custom Capsim® 22

*/

]]>
</COMMENTS>

<DESC_SHORT>
This star convolves the input samples with the impulse response
(finite duration, FIR) given in a file.
</DESC_SHORT>

<INCLUDES>
<![CDATA[

#include <math.h>
#include <stdio.h>

]]>
</INCLUDES>

<DEFINES>

#define PI 3.1415926

</DEFINES>

<STATES>
 <STATE>
 <TYPE> float* </TYPE>
 <NAME> x_P </NAME>
 </STATE>
 <STATE>
 <TYPE> float* </TYPE>
 <NAME> h_P </NAME>
 </STATE>
</STATES>

<DECLARATIONS>

 int i;
 int j;
 float tmp1,tmp2;
 float sum;
 FILE *fopen();
 FILE *imp_F;

</DECLARATIONS>

<PARAMETERS>
<PARAM>
 <DEF>File name containing impulse response samples</DEF>
 <TYPE> file </TYPE>
 <NAME> filename </NAME>
 <VALUE></VALUE>
</PARAM>
<PARAM>
 <DEF>Order of impulse response</DEF>
 <TYPE> int </TYPE>
 <NAME> N </NAME>
 <VALUE></VALUE>
</PARAM>
</PARAMETERS>

Custom Capsim® 23

<INPUT_BUFFERS>
 <BUFFER>
 <TYPE> float </TYPE>
 <NAME> x </NAME>
 </BUFFER>
</INPUT_BUFFERS>

<OUTPUT_BUFFERS>
 <BUFFER>
 <TYPE> float </TYPE>
 <NAME> y </NAME>
 </BUFFER>
</OUTPUT_BUFFERS>

<INIT_CODE>
<![CDATA[

 /*
 * Allocate memory and return pointers for tapped delay
line x_P and
 * array containing impulse response samples, h_P.
 *
 */
 if((x_P = (float*)calloc(N,sizeof(float))) == NULL ||
 (h_P = (float*)calloc(N,sizeof(float))) == NULL) {
 fprintf(stderr,"convolve: can't allocate work
space\n");
 return(4);
 }
 /*
 * open file containing impulse response samples. Check
 * to see if it exists.
 *
 */
 if((imp_F = fopen(filename,"r")) == NULL) {
 fprintf(stderr,"Convolve could not be opened file was
%s \n",
 filename);
 return(4);
 }
 /*
 * Read in the impulse response samples into the array
 * and initialize the tapped delay line to zero.
 *
 */
 for (i=0; i<N; i++) {
 x_P[i]= 0.0;
 fscanf(imp_F,"%f",&h_P[i]);
 }

]]>
</INIT_CODE>

<MAIN_CODE>
<![CDATA[

 while(IT_IN(0)){
 /*
 * Shift input sample into tapped delay line

Custom Capsim® 24

 */
 tmp2=x(0);
 for(i=0; i<N; i++) {
 tmp1=x_P[i];
 x_P[i]=tmp2;
 tmp2=tmp1;
 }
 /*
 * Compute inner product
 */
 sum = 0.0;
 for (i=0; i<N; i++) {
 sum += x_P[i]*h_P[i];
 }
 if(IT_OUT(0)) {
 KrnOverflow("convolve",0);
 return(99);
 }
 /*
 * set output buffer to response result
 */
 y(0) = sum;
 }

]]>
</MAIN_CODE>

<WRAPUP_CODE>
<![CDATA[

 free(x_P); free(h_P);

]]>
</WRAPUP_CODE>

</BLOCK>

Figure. 3 Source Code for convolve.s

We can see that code is arranged into the sections as described earlier in
the chapter. Note that the similarity between this block and a C program.

We will now discuss each section of the code in detail. First several
general comments must be made.

The ordering of the parts of the program is not important.
BLOCKGEN.XSL interprets the ".s" file by searching the entire code for
each set of delimiters, position within the file is of no significance. Now
we will discuss the significance of the convolve.s block in particular.

The parameters and declarations are similar to the examples given
previously in this chapter, however, the form of the state variables

Custom Capsim® 25

requires some discussion. The state variables, x_P and h_P, are pointers.
In the <INIT_CODE> memory is dynamically allocated to these pointers
using the calloc command (this is a standard C command). Dynamic
memory allocation allows the block to take up as little memory as
possible. This can be very important when running a big simulation. If the
memory can not be allocated a return(4) is executed. This is a signal to
CAPSIM that an error has occurred. A return with an argument different
from 0 causes CAPSIM to halt execution of the simulation. Note that a
user must flag their own internal errors. This error trapping can be seen a
second time in the <INIT_CODE> when the file is opened. Recall that
the <INIT_CODE> is only executed the first time the block is called,
therefore memory allocation, file reading, and anything else the
programmer wants to have occur only once are put in this section. Any
memory pointer, file pointer or variable that will be set and used in the
MAIN CODE should be declared as a STATE.

In this block, there are only one input and one output buffer, x and y
respectively. Recall that the way that samples are accessed: x(0) is the
current sample, x(1) is the most recent past sample, x(2) is the one before
that, etc. The output buffer functions in an analogous manner.

Now lets discuss the <MAIN_CODE>. The first line in the
<MAIN_CODE>., while(IT_IN(0)) sets up a loop. Every time that
IT_IN(0) is called it checks to see how many samples are on the input
buffer x. If there are no samples then IT_IN (0) returns a 0 and the loop is
broken. If there are samples to be read then IT_IN (0) returns the number
of samples on the buffer and then increments the buffer pointer by 1, in
effect advancing time.

Once inside the loop the present sample is first saved in a dummy variable,
a <DECLARATION>, before being shifted into the tapped delay line.
Once the tapped delay line has been updated the actual filtering of the
sample takes place.

After the filtering is done the block needs to put the filtered sample on its
output buffer so that other blocks can access it. This is done in two steps:
First, IT_OUT(0) is called. This function updates time on the output
buffer. Second, the line y(0) = sum; moves the filtered value onto the
buffer in the new position.

After the block is finished running the <WRAPUP_CODE> will be
executed once. In the <WRAPUP_CODE> for convolve.s the space that
was allocated in the <INIT_CODE> is freed.

The above example is just one way that this block could have been
implemented. As an exercise it is suggested that the reader attempt to

Custom Capsim® 26

rewrite this block using delay_max=N and the x buffer to implement the
tapped delay line instead of allocating using the x_P array.

2.10.3 Auto Fan-in and Fan-out Blocks

Two important features available in CAPSIM blocks that are not
represented in the above block are the ability to have an arbitrary number
of outputs, such as in node.s, or an arbitrary number of inputs, such as in
add.s.

The next example will deal with how one goes about creating a block with
an arbitrary number of outputs. It will use the code in Fig. 4.

Figure 4 Node block with auto fan-out

<BLOCK>
<BLOCK_NAME> node </BLOCK_NAME>

<COMMENTS>
<![CDATA[

/* node.s */
/***
 node()
**
Function has a single input buffer, and outputs each input
sample to
an arbitrary number of output buffers.

Function has a single input buffer, and outputs each input
sample to an arbitrary number of output buffers.

*/

]]>
</COMMENTS>

Custom Capsim® 27

<DESC_SHORT>
Function has a single input buffer, and outputs each input
sample to an arbitrary number of output buffers.
</DESC_SHORT>

<STATES>
 <STATE>
 <TYPE>int</TYPE>
 <NAME>obufs</NAME>
 </STATE>
</STATES>

<DECLARATIONS>

 int no_samples;
 int i;

</DECLARATIONS>

<INPUT_BUFFERS>
 <BUFFER>
 <TYPE>float</TYPE>
 <NAME>x</NAME>
 </BUFFER>
</INPUT_BUFFERS>

<INIT_CODE>
<![CDATA[

 /* note and store the number of output buffers */
 if((obufs = NO_OUTPUT_BUFFERS()) <= 0) {
 fprintf(stdout,"node: no output buffers\n");
 return(1); /* no output buffers */
 }

]]>
</INIT_CODE>

<MAIN_CODE>
<![CDATA[

 for(no_samples=MIN_AVAIL();no_samples >0; --
no_samples) {
 IT_IN(0);
 for(i=0;i<obufs;++i) {
 if(IT_OUT(i)) {
 KrnOverflow("node",i);
 return(99);
 }
 else
 OUTF(i,0) = x(0);

Custom Capsim® 28

 }
 }

 return(0); /* input buffer empty */

]]>
</MAIN_CODE>

<WRAPUP_CODE>
<![CDATA[

]]>
</WRAPUP_CODE>

</BLOCK>

Figure. 5 Source Code for node.s

This example is included to teach the user how to create a block that has
as an arbitrary number of outputs. We see that there is no section called
<OUTPUT_BUFFERS> in this block, this is because the number of
outputs is determined at run time by the number of blocks that this block
connects to.

The number of output buffers is determined in the <INIT_CODE>. The
state variable no_buffers is set equal to the value returned by
NO_OUTPUT_BUFFERS(). Recall from section 2.9 that this function
returns the number of outputs connected to a block in the topology. A
check is also made to see if the block is connected at all. (In a block with a
fixed number of output buffers CAPSIM makes this check.)

The <MAIN_CODE> simply takes each input value and places it on
every output buffer. This block loops through until it clears the input
buffer of all available samples each time it is called by using the
statement: while(IT_IN(0)).

The manner in which each sample is put on every output buffer is through
the two statements inside the for loop. First, IT_OUT(buffer_no)
advances time on the output buffer buffer_no. Second, *(float
*)POUT(buffer_no,0) = x(0) is how the output buffer is accessed. Recall
from section 2.9 that POUT() is a pointer to output buffer number
buffer_no 0 samples in the past (current). This statement allows us to
write the current input sample x(0) to this location.

Custom Capsim® 29

After putting the current input sample on each output buffer the while
statement checks to see if there is another input sample. If there is the
process is repeated, if not the return(0) statement at the bottom of the
block is executed.

The last example will deal with the similar capability of having an
arbitrary number of input buffers. The add.s block, Fig. 7, will be used to
show this feature.

Σ
1

0

1

n
m

.

.

.

.

.

.

0

Figure 7. Add Block add.s

Custom Capsim® 30

<BLOCK>
<BLOCK_NAME> add </BLOCK_NAME>

<COMMENTS>
<![CDATA[

/* add.s */
/**
 add()

Function adds all its input samples to yield an output
sample;
the number of input buffers is arbitrary and determined at
run time.
The number of output buffers is also arbitrary (auto-
fanout).
PROGRAMMERS
Programmer: D.G.Messerschmitt March 7, 1985
Modified: 1/89 ljfaber. add auto-fanout

*/

]]>
</COMMENTS>

<DESC_SHORT>
Adds multiple floating point buffers. Auto fan-in auto fan-
out
</DESC_SHORT>

<STATES>
 <STATE>
 <TYPE>int</TYPE>
 <NAME>ibufs</NAME>
 </STATE>
 <STATE>
 <TYPE>int</TYPE>
 <NAME>obufs</NAME>
 </STATE>
</STATES>

<DECLARATIONS>

 int i,j;
 int samples;
 float sample_out;

</DECLARATIONS>

<INIT_CODE>
<![CDATA[

 /* store as state the number of input/output buffers
*/

Custom Capsim® 31

 if((ibufs = NO_INPUT_BUFFERS()) < 1) {
 fprintf(stderr,"add: no input buffers\n");
 return(2);
 }
 if((obufs = NO_OUTPUT_BUFFERS()) < 1) {
 fprintf(stderr,"add: no output buffers\n");
 return(3);
 }

]]>
</INIT_CODE>

<MAIN_CODE>
<![CDATA[

 /*

* read one sample from each input buffer and add
them

 */
 for(samples = MIN_AVAIL(); samples >0; --samples) {

 sample_out = 0;

 for(i=0; i<ibufs; ++i) {
 IT_IN(i);
 sample_out += INF(i,0);
 }
 for(i=0; i<obufs; i++) {
 if(IT_OUT(i)) {
 fprintf(stderr,"add: Buffer %d is
full\n",i);
 return(1);
 }
 OUTF(i,0) = sample_out;
 }
 }

 return(0); /* at least one input buffer empty */

]]>
</MAIN_CODE>

<WRAPUP_CODE>
<![CDATA[

]]>
</WRAPUP_CODE>

</BLOCK>

Custom Capsim® 32

Fig. 8 Source Code for add.s

This example will be very similar to the previous one except that the roles
the input and output play are reversed. Note that in the above code there is
no section entitled <INPUT_BUFFERS>. This is because the number of
input buffers is determined at run time in the <INIT_CODE>..

In the <INIT_CODE>..the state variable no_buffers is set equal to the
number of blocks connected to this block through the use of the
NO_INPUT_BUFFERS() command. (See section 2.9.) This is done while
checking to make sure that there is at least one input connection.

In the <MAIN_CODE> a different looping procedure is used to read the
samples off the input buffers. The MIN_AVAIL() function (see section
2.9) is used. This is because you only want to loop while there are
samples on all input buffers, as soon as one of the input buffers runs out
of samples the looping must stop.

While inside this loop the current sample from each input buffer must be
added together and output. The first step is to advance time on the output
buffer: IT_OUT(0). Then the add block must add together all the current
input values, this is done in a for loop. The loop advances time on the
input buffer buffer_no and then adds this into the output. The key
command is: sample_out(0) += INF(buffer_no,0). Recall from section
2.9 that the INF() command accesses the value on the input buffer
buffer_no 0 samples in the past (current sample). This loop traverses all
the input buffers.

Custom Capsim® 33

2.10.4 The Null Block

The null block has the important characteristic that it can replace any
block no matter how many input or output buffers the block has. It is a
very useful block. In particular, if Capsim runs across a block in a
topology that does not exist in the library, it will be replaced with a null
block. A warning will be issued.

<BLOCK>
<BLOCK_NAME> null </BLOCK_NAME>

<COMMENTS>
<![CDATA[

/* null.s */
/**
*

 null()

*
This star is useful as a temporary substitute for
another star.
The data at any input buffer is passed to the
matching (same numbered)
output buffer. Any unmatched input buffers have
their data absorbed.
Any unmatched output buffers output zeroes at a rate
matching input 0.
*/

]]>
</COMMENTS>

<DESC_SHORT>
This star does nothing, simply puts its input samples on its
output buffer. It is useful as a temporary substitute for a star.
</DESC_SHORT>

<STATES>
 <STATE>
 <TYPE>int</TYPE>
 <NAME>ibufs</NAME>
 </STATE>
 <STATE>
 <TYPE>int</TYPE>
 <NAME>obufs</NAME>
 </STATE>
 <STATE>
 <TYPE>int</TYPE>

Custom Capsim® 34

 <NAME> extraOBufs </NAME>
 </STATE>

 </STATES>

 <DECLARATIONS>
 int i,j;

 </DECLARATIONS>

<INIT_CODE>
<![CDATA[

if((ibufs = no_input_buffers()) <= 0) {
 fprintf(stdout,"null: no input buffers\n");
 return(1);
}
 obufs = no_output_buffers();
if((extraOBufs = obufs - ibufs) < 0) extraOBufs = 0;

]]>
</INIT_CODE>

<MAIN_CODE>

 <![CDATA[
for(i=0; i<ibufs; i++) {
 if(i == 0 && extraOBufs > 0) {
 while(it_in(0)) {

 if(it_out(0)) {
 KrnOverflow("convolve",0);
 return(99);
 }

 outf(0,0) = inf(0,0);
 for(j=0; j < extraOBufs; j++)
{

 if(it_out(ibufs+j)){
 KrnOverflow("null",ibufs);
 return(99);
 }

 outf(ibufs+j,0) = 0;
 }
 }
 }
 else if(i < obufs) {
 while(it_in(i)) {
 it_out(i);
 outf(i,0) = inf(i,0);
 }
 }
 else
 while(it_in(i));
}

]]>
</MAIN_CODE>

Custom Capsim® 35

<WRAPUP_CODE>
<![CDATA[

]]>
</WRAPUP_CODE>

</BLOCK>
Figure. 9 Source Code for null.s

Custom Capsim® 36

2.10.5 Probe Blocks

The following block illustrates how to write a probe. This type of block
has the feature that all input buffer samples flow through the block to the
output buffers. The block performs an operation on the data samples as
they flow through. In this case, the samples are printed to a file.

<BLOCK>
<BLOCK_NAME> prfile </BLOCK_NAME>

<COMMENTS>
<![CDATA[

/**
 prfile()

Prints samples from an arbitrary number of input buffers
to a file, which is named as a parameter. If the file name is
set to "stdout", or "stderr" the output goes to the terminal.
- A sample from each input is printed in columns on a single
line.
 If printing to stdout, these are labeled with signal names.
- The printing function can be disabled without removing the
star,
 via a control parameter.
- Data "flow-through" is implemented: if any outputs are
connected,
 their values come from the correspondingly numbered input.
 (This feature is not affected by the control parameter.)
 (There cannot be more outputs than inputs.)

Programmer: L.J.Faber

*/

]]>
</COMMENTS>

<DESC_SHORT>
Prints samples from an arbitrary number of input buffers to a
file, which is named as a parameter.
</DESC_SHORT>

<DEFINES>

#define FLOAT_BUFFER 0
#define COMPLEX_BUFFER 1
#define INTEGER_BUFFER 2

</DEFINES>

Custom Capsim® 37

<STATES>
 <STATE>
 <TYPE>FILE*</TYPE>
 <NAME>fp</NAME>
 </STATE>
 <STATE>
 <TYPE>int</TYPE>
 <NAME>numberInputBuffers</NAME>
 </STATE>
 <STATE>
 <TYPE>int</TYPE>
 <NAME>numberOutputBuffers</NAME>
 </STATE>
 <STATE>
 <TYPE>int</TYPE>
 <NAME>displayFlag</NAME>
 <VALUE>0</VALUE>
 </STATE>
</STATES>

<DECLARATIONS>

 int i,j,k;
 complex val;

</DECLARATIONS>

<PARAMETERS>
<PARAM>
 <DEF>Name of output file</DEF>
 <TYPE>file</TYPE>
 <NAME>file_name</NAME>
 <VALUE>stdout</VALUE>
</PARAM>
<PARAM>
 <DEF>Print output control (0/Off, 1/On)</DEF>
 <TYPE>int</TYPE>
 <NAME>control</NAME>
 <VALUE>1</VALUE>
</PARAM>
<PARAM>
 <DEF>Buffer type:0= Float,1= Complex, 2=Integer</DEF>
 <TYPE>int</TYPE>
 <NAME>bufferType</NAME>
 <VALUE>0</VALUE>
</PARAM>
</PARAMETERS>

<INIT_CODE>
<![CDATA[

if((numberInputBuffers = NO_INPUT_BUFFERS()) <= 0) {
 fprintf(stdout,"prfile: no input buffers\n");

Custom Capsim® 38

 return(1);
}
if((numberOutputBuffers = NO_OUTPUT_BUFFERS()) >
numberInputBuffers) {
 fprintf(stdout,"prfile: more output than input buffers\n");
 return(2);
}
if(strcmp(file_name,"stdout") == 0) {
 fp = stdout;
 displayFlag = 1;
}
else if(strcmp(file_name,"stderr") == 0) {
 fp = stderr;
 displayFlag = 1;
}
else if((fp = fopen(file_name,"w")) == NULL) {
 fprintf(stdout,"prfile: can't open output file '%s'\n",
 file_name);
 return(3);
}
switch(bufferType) {
 case COMPLEX_BUFFER:
 for(i=0; i< numberInputBuffers; i++)
 SET_CELL_SIZE_IN(i,sizeof(complex));
 for(i=0; i< numberOutputBuffers; i++)
 SET_CELL_SIZE_OUT(0,sizeof(complex));
 break;
 case FLOAT_BUFFER:
 for(i=0; i< numberInputBuffers; i++)
 SET_CELL_SIZE_IN(i,sizeof(float));
 for(i=0; i< numberOutputBuffers; i++)
 SET_CELL_SIZE_OUT(0,sizeof(float));
 break;
 case INTEGER_BUFFER:
 for(i=0; i< numberInputBuffers; i++)
 SET_CELL_SIZE_IN(i,sizeof(int));
 for(i=0; i< numberOutputBuffers; i++)
 SET_CELL_SIZE_OUT(0,sizeof(int));
 break;
 default:
 fprintf(stderr,"Bad buffer type specified in prfile
\n");
 return(4);
 break;
}

]]>
</INIT_CODE>

<MAIN_CODE>
<![CDATA[

if(control) {
 if(displayFlag && MIN_AVAIL() > 0) {
 fprintf(fp,"\n");

Custom Capsim® 39

 for(j=0; j<(numberInputBuffers-2); j++)
 fprintf(fp,"%-6s","");
 fprintf(fp,"Output From Prfile '%s'\n",block_P-
>name);
 for(j=0; j<numberInputBuffers; ++j)
 fprintf(fp,"%-10s ", SNAME(j));
 fprintf(fp,"\n");
 }
 /* This mode synchronizes all input buffers */
 for(i = MIN_AVAIL(); i>0; i--) {
 for(j=0; j<numberInputBuffers; ++j) {
 IT_IN(j);
 if(j < numberOutputBuffers) {
 if(IT_OUT(j)) {
 KrnOverflow("prfile",j);
 return(99);
 }
 switch(bufferType) {
 case COMPLEX_BUFFER:
 OUTCX(j,0) = INCX(j,0);
 break;
 case FLOAT_BUFFER:
 OUTF(j,0) = INF(j,0);
 break;
 case INTEGER_BUFFER:
 OUTI(j,0) = INI(j,0);
 break;
 }

 }
 switch(bufferType) {
 case COMPLEX_BUFFER:
 val=INCX(j,0);
 if(fp!= stdout)
 fprintf(fp,"%-10g %-10g ",
 val.re,val.im);
 else {
 fprintf(stderr,"%-10g %-10g ",
 val.re,val.im);

 }
 break;
 case FLOAT_BUFFER:
 if(fp!= stdout)
 fprintf(fp,"%-10g ",
 INF(j,0));
 else {
 fprintf(stderr,"%-10g ",
 INF(j,0));

 }
 break;
 case INTEGER_BUFFER:
 if(fp!= stdout)
 fprintf(fp,"%-d ",
 INI(j,0));
 else {

Custom Capsim® 40

 fprintf(stderr,"%-d ",
 INI(j,0));

 }
 break;
 }

 }
 if(fp!= stdout)
 fprintf(fp,"\n");
 else {
 fprintf(stderr," \n ");

 }

 }
}
else {
 /* This mode empties all input buffers */
 for(j=0; j<numberInputBuffers; ++j) {
 if(j < numberOutputBuffers) {
 while(IT_IN(j)) {
 if(IT_OUT(j)){
 KrnOverflow("prfile",j);
 return(99);
 }
 switch(bufferType) {
 case COMPLEX_BUFFER:
 OUTCX(j,0) = INCX(j,0);
 break;
 case FLOAT_BUFFER:
 OUTF(j,0) = INF(j,0);
 break;
 case INTEGER_BUFFER:
 OUTI(j,0) = INI(j,0);
 break;
 }

 }
 }
 else
 while(IT_IN(j));
 }
}
return(0);

]]>
</MAIN_CODE>

<WRAPUP_CODE>
<![CDATA[

 if(fp != stdout && fp != stderr)

Custom Capsim® 41

 fclose(fp);

]]>
</WRAPUP_CODE>

</BLOCK>

Figure 10 Source Code for prfile.s

2.11 Template BLOCK

One trick in making the writing of your own blocks easier is to keep a
template block. The BLOCK "template.s" should have all the control
structures and comments that direct you as to what needs to be added.
Editing this BLOCK, deleting the comments and adding your own
customized code, is an easy way to develop a new BLOCK definition. An
alternate approach is to edit another block that performs a similar function.

Capsim provides TK/TCL tools to generate block XML code using a
graphical interface based on templates for sources,processing blocks,
terminators and probes and for a variety of input/output buffer types
(floating point, integer, complex, and image).

2.12 Tips and Hints in Writing Blocks

The following are a number of helpful hints in writing blocks;

(1) Do not use reserved names such as buffer, file, int, char, state, etc for
variable names. Avoid using names which contain the state variables,
parameters or buffer names subsets of the names. Some errors during
compilation are related to the fact that blockgen.xsl creates #define
statements for states, buffers, and parameters. The C preprocessor will
then substitute these into the pattern creating an error during compilation.

(2) Blockgen.xsl will completely ignore all code not between parameters,
states, buffers, initialization code, main_code, wrapup, etc. Hence, if you
have global variables to the block, or define constants, put them in an
include file. Then use #include "user.h" for example. This works because
blockgen.xsl copies the #include line directly to the generated C code.

Custom Capsim® 42

(3) It is better to keep the block code to a minimum and call subroutines
from the block. Let the block code handle parameters, states and buffers.

(4) You don't have to integrate a filter design package etc. into Capsim to
use it. All you need to do is write a block that executes the design program
using the system() call during initialization. Then you can extract the filter
parameters for example, from a file and use the filter during run time (in
main_code). In the initialization code segment, you can use the
parameters to create an input file to the package, execute it with the
system call, extract the results, allocate space for the filter and run it in the
main_code. This is efficient since the majority of a simulation time is
spent in the main_code. Also, during initialization, memory usage is at a
minimum level. Using this tip you can even use FORTRAN design
packages with Capsim.

(5) Make sure that there are no spaces after <INIT_CODE>,
<MAIN_CODE>,etc. You may get an unnerving error during blockgen.xsl
or compilation. The reason is that blockgen.xsl does a pattern match and
a blank becomes part of the pattern.

(6) To define a pointer use the following:
 int* samples;
 char* strBuff;
 float** matrix;
blockgen.xsl has a problem with int *samples, for example.

(7) blockgen.xsl does not recognize two dimensional arrays such as
 float matrix[10][100];
However, it does recognize double pointers:
 float** matrix;
In this case allocate matrix as follows:
 matrix = (float**)calloc(10,sizeof(float));
 for(i=0; i< 10; i++)

 matrix[i]=(float*)calloc(100,sizeof(float));
This method is good since usually it is done during initialization code, the
matrix is allocated to the size needed as determined by say the parameters,
and finally, the memory may be freed up during wrapup_code. This is
especially useful for images.

(8) Make sure that you consume all samples (cells) on input buffers for
efficiency. Also, make sure that no more samples are requested than are
available on the input buffer. For single input buffers use the following
while loop in main code:
 while(IT_IN(0)){
 ...
 }

Custom Capsim® 43

In this case IT_IN(0) points to the new sample and is TRUE as long as a
sample is available.

When more than one buffer is connected to the input use the following:

for(no_samples = MIN_AVAIL();
 no_samples > 0; --no_samples){

 ...
 }
The function MIN_AVAIL () returns the minimum number of samples
from among all input connections. While one buffer may have 128
samples another may have 256. Thus the number 128 will be returned.
Input beyond the buffer will not be requested and the program will not
crash.

(9) A block may increase or decrease the sampling rate. For example for
every input sample you may create 10 output samples or vice versa. This
is a major advantage of Capsim. So no problem!

(10) When documenting a block provide useful information at the top of
the code, since with the view source code facility in Capsim, users will be
presented with a window with this information. The information should
include comments about parameters and valid ranges in addition to the
block's functionality.

Custom Capsim® 44

3 Adding Your Blocks to CAPSIM

CAPSIM provides the utility to add blocks to the library through the use
of the bash shell program precapsim.sh. This is a separate program from
CAPSIM and is run from the UNIX/LINUX shell not from inside
CAPSIM. Another program, blockmaint.pl, is also available for library
maintenance. When using the MSYS/MINGW environment use source
precapsim.sh instead of bash precapsim.sh to execute the script.

3.1 Precapsim and Makefile

precapsim.sh and the Capsim Makefile provides all the functionality
necessary to create your own personalized version of CAPSIM.

Create a new directory any where on your system. For example WORK.
You will be creating blocks and subroutines to incorporate into Capsim in
this directory.

Suppose that CapsimTMK (or Capsim) is installed in the following
directory:

 /usr/local/CapsimTMK

Then setup the environment variable CAPSIM as follows:

 export CAPSIM=/usr/local/CapsimTMK

Next make the directory you just created (WORK) the current directory
and execute the following:

 %bash $CAPSIM/TOOLS/precapsim.sh –l

The precapsim.sh shell command will create all the necessary directories
and copy all files including Makefiles and scripts from the $CAPSIM
directory. It will also create the capsim executable in the current directory.

After executing the script precapsim.sh type make:

Custom Capsim® 45

 %make

To execute capsim type:

 ./capsim –b

You will be in the Capsim TMK interactive environment. Go ahead and
quit.

To start Capsim with TCL scripting support, type

./capsim –c

To exit, type exit.

The shell command precapsim.sh creates the directories BLOCKS, SUBS,
and include. A dummy subroutine and block are also created.

A key point is that the precapsim.sh also copies a Makefile into the current
directory. With this Makefile it is very easy to build capsim using your
blocks and subroutines. All you need to do is place a block in the
BLOCKS directory and, in the main directory (WORK), type make.

View the Makefile to see how this happens. The BLOCKS directory has a
file called blocks.mak . This Makefile has all the necessary dependencies
to create the C code from the Block “.s” XML code. It adds the block to
the block database blockdatabase.dat and creates the file krn_blocklib.c
and the library libblock.a with the object files for the blocks. This is all
done automatically. The file blocks.mak itself is created by a perl script
blockmake.pl in the $CAPSIM/TOOLS directory. This perl script, given
the name of the blocks or *.s, creates a make file for the blocks:
blocks.mak.

For more info on the block database and its maintenance see the sections
below.

The subroutine directory SUBS also has a Makefile and any C subroutine
will be compiled and added to the libsubs.a library and linked to capsim.

The include directory is where common include files for both the blocks
in the BLOCKS and C code in the SUBS directory should be placed. The
Makefiles use this directory to search for include files when compiling the
blocks and subroutines.

Custom Capsim® 46

So in a nutshell it is real easy to get started. For the first time just execute
precapsim.sh –l . Afterwords just type make to update. Just place blocks in
the BLOCKS directory and the subroutine C code in the SUBS directory.

When running make, check for errors and correct them. For block compile
errors, refer to C code. Make sure you fix the corresponding .s code.

You cans also run make in the BLOCKS directory to check and correct
errors by typing “make –f blocks.mak”.

You can use gdb and ddd to debug the block source code.

WORK

TOPS BLOCKS SUBS include

Makefile
capsim

blockdatabase.dat
libblock.a
krn_blocklib.c
blocks.mak
block1.s
block2.s
...

Makefile
sub1.c
sub2.c
...

top1.t
top2.t incl1.h

incl2.h

Custom Capsim® 47

3.2 BLOCK MAINTENANCE

This is the program that is called by PRECAPSIM and in Makefiles to
handle the adding or deleting of a block to/from the library (libblock.a). It
may be run by itself to update or examine the library without creating a
new version of capsim.

BLOCKMAINT is called in one of five ways:

%perl $CAPSIM/TOOLS/blockmaint.pl a[dd] blockname

% perl $CAPSIM/TOOLS/blockmaint.pl d[elete] blockname

% perl blockmaint.pl l[ist]

%perl blockmaint.pl u[sage]

%perl blockmaint.pl g[enerate]

% perl blockmaint.pl h[elp]

The a option is used to add a block to blockdatabase.dat and
krn_blocklib.c is updated.

The d option is used to delete a block from blockdatabase.dat.

The l option gives a list of the blocks in blockdatabase.dat.

The g option is used to generate the C code krn_blocklib.c from
blockdatabase.dat. This is useful when blocks are deleted or added to the
database and this C code needs to reflect the changes in
blockdatabase.dat.

% perl blockmaint.pl l

* * * Blocks in Main Library * * *

add delay node impulse
gain time readfile prfile
eye plot null zero
lconv data linecode filtnyq
random sink

The u option gives the usage for BLOCKMAINT.

Custom Capsim® 48

% perl blockmaint.pl u

usage:
command ->
 a[dd] blockname
 d[elete] blockname
 l[ist]
 u[sage]
 h[elp]

Finally, the h option gives a brief description as to the function of
BLOCKMAINT.

This chapter contains all the information necessary to write your own
blocks and maintain a personalized version of capsim. The power of
CAPSIM comes from the ability to share code with other users. Once a
block has been developed by one user it is easily shared with other users.

Custom Capsim® 49

4 CAPSIM Buffers

4.1 Introduction

In this section we will illustrate how Capsim supports buffers for integer,
float,double, complex, double precision fixed point (64 bit) or any other
data structure. In Fig. 11, the source block places "samples" on the buffer.
By "samples" we mean any data structure. The Consumer Block takes
samples from the buffer and processes them. The buffer is output buffer 0
for the Source Block and input buffer 0 for the Consumer Block. Thus
both blocks are accessing the same data buffer structure. The mechanism
by which "samples" are placed on a buffer and accessed by the receiving
block are explained below.

0
Consumer
Star

Source
Star

0

Buffer
 Figure 11.

Although, the explanation may be involved, the insights gained are very
valuable for proper block coding and understanding of Capsim's
capabilities and limitations. You can actually skip section 4.2 and proceed
to section 4.3 if you want to understand how to create your own buffer
type.

4.2 Buffer Implementation

The interconnection of blocks within Capsim is accomplished through
buffers. These buffers are actually random access buffers. In Capsim,
certain enhancements were made to buffer management but essentially the
random access buffers are the same implementation as in BLOSIM. For a
discussion and history on the development and implementation of random

Custom Capsim® 50

access buffers see Messerschmitt3, (also visit
http://capsimtmk.sourceforge.net/blosim.htm) . Random access buffers
are implemented as a circular double-linked list data structure. The buffers
are made up of cells. Each cell contains a pointer to user data and two
pointers which point to adjacent cells.

The pointer to user data is what gives buffers in Capsim the flexibility to
pass floating point, double precision fixed point, complex, character, or
any other general data structure between blocks. The user allocates
memory for the data structure, places valid data in the structure and the
pointer to the structure is what a cell refers to.

The buffer data structure contains the size of the cells, the maximum and
minimum number of samples to retain for delays, the current number of
allocated cells, pointers to the last cells accessed by the user, for both
input and output, the current number of cells stored in the buffer, and other
variables and pointers.

The circular double-linked list data structure for a buffer is illustrated in
Fig. 11.

3 David Messerschmitt, Structured Interconnection of Simulation Programs, IEEE
GLOBECOM 1984

Custom Capsim® 51

p_oldest

p_last
delay

pin(0,0)

pout(0,0)

p_next
p_last
p_data

pin(0,0)
After it_in(0)

pout(0,0)
After it_out(0)

pin(0,2)

Figure 11 Implementation of a random access buffer

The first time a "sample" is placed on a buffer, 128 cells are allocated for
the buffer. This number is a default and may be changed. So, at first there
will be 128 available cells in the buffer. The next time a sample is placed
in the buffer, a cell will be available for accepting data. All that is required
is to point to an empty cell. In the figure, PIN(0,0) is a pointer to the
current cell in the 0th input buffer. POUT(0,0) points to the most current
cell available for placement of data in the output buffer. As time is
incremented in the blocks, through calls to IT_IN(0) and IT_OUT(0), only
the pointers move while the cells remain stationary. When time is
incremented, by the IT_IN(0) function in the receiving block, PIN(0,0)
will point to the next cell. When PIN(0,0) is equal to POUT(0,0) then all
samples have been accessed from the buffer and the block must return (
IT_IN(0) will return a 0). In the mean time, when the output block
increments time using the function IT_OUT(0), the POUT(0,0) pointer is
incremented. As long as cells are available and have not been read, or, are
not cells that require access due to a set delay requirement on the buffer,
there is no problem. However, if the block inputting the data has not
processed enough cells, when POUT(0,0) equals p_oldest, then the buffer

Custom Capsim® 52

is full and another 128 cells are allocated. p_oldest is the oldest cell which
is necessary to retain in order to satisfy the maximum input and output
delay requirements.

In the figure, the cells marked with a dot are forbidden access by the input
buffer unless time is incremented.

A number of conclusions can be drawn from the above description on
the implementation of buffers in Capsim.

(1) The first time a block calls IT_OUT(bufferNumber), 128 cells are
allocated for that buffer. POUT(bufferNumber,0) will refer to a cell ready
to accept output data.

(2) No further allocation of extra cells will happen as long as time is
incremented by the input block and samples accessed from the buffer thus
moving p_oldest around the circle and ahead of POUT(bufferNumber,0).
This is normally the case since a block will process all of its input samples
when called for efficiency.

(3) In order to limit the size of buffers and avoid memory reallocations,
blocks producing outputs should not exceed placing 128 samples on the
output buffer per call. If more samples are outputted then the buffer will
need to grow.

(4) As discussed earlier, a block should consume all available input
samples before returning to the kernel.

(5) A buffer data structure is not created unless a connection is made to a
block. Thus, you should first check to see if a buffer exists before you
access it. Otherwise, the program may crash. The correct procedure will be
explained below.

Custom Capsim® 53

4.3 Using and Creating Buffer Types

4.3.1 Simple Buffers

The simplest way to specify input and output buffers when creating a
block is to use the code,

 <INPUT_BUFFERS>
 <BUFFER>
 <TYPE> float </TYPE>
 <NAME> xin </NAME>
 </BUFFER>
 </INPUT_BUFFERS>

 <OUTPUT_BUFFERS>
 <BUFFER>
 <TYPE> float </TYPE>
 <NAME> yout </NAME>
 </BUFFER>
 </OUTPUT_BUFFERS>

In this case an input buffer called xin is specified which uses floating point
samples. An output buffer called yout is also specified with floating point
samples.

When you use this technique, Capsim will check to see if a buffer is
connected and will issue an error message prior to running the simulation
if it is not. A check is made as to whether the source block buffer type (
therefore, its cell size) is compatible with the receiving block and vice
versa for output buffers. It is up to you to keep your buffers consistent.

As explained earlier in creating new blocks, the buffer is accessed by first
incrementing time (using the IT_IN() or IT_OUT() routines), and then, for
input buffers, assigning a variable to the data in the cell pointed to by the
input buffer pointer. As an example, you do the following for input buffers
in the main code (assuming one input buffer),

 <MAIN_CODE>
 while(IT_IN(0)) {
 inputSample = xin(0);
 ...
 }
 ...

Custom Capsim® 54

 </MAIN_CODE>

The routine IT_IN(0) will return a 0 if the buffer is empty. We then return
back to the kernel until the block is executed again.

The buffer access xin(delay) is actually defined to be
(*((float*)PIN(0,delay))) for those readers who have read section 4.2.

You can specify a delay associated with the buffer so that previous
samples can be obtained from the buffer. The buffer will retain the
delayed samples for use. This avoids the necessity to create an array and
maintaining it through the use of state variables. Capsim provides this
facility for your use. Here is an example:

 <INPUT_BUFFERS>
 <BUFFER>
 <TYPE> float </TYPE>
 <NAME> xin </NAME>

 <DELAY>
 <TYPE>max</TYPE>
 <VALUE_MAX> 5 </VALUE_MAX>

 </DELAY>
 </BUFFER>
 </INPUT_BUFFERS>

 ...
 <MAIN_CODE>
 while(IT_IN(0)) {
 delayedSample=xin(4);
 currentSample = xin(0);
 ...
 }
 ...
 </MAIN_CODE>

Note that xin(4) points to the input sample delayed in time by 4. That is it
is equivalent to the z-4 operator.

For output buffers, time is simply incremented and samples are placed on
the buffer. Here is an example,

 <OUTPUT_BUFFERS>
 <BUFFER>
 <TYPE> float </TYPE>
 <NAME> yout </NAME>

 <DELAY>
 <TYPE>max</TYPE>
 <VALUE_MAX> 2 </VALUE_MAX>

 </DELAY>

Custom Capsim® 55

 </BUFFER>
 </OUTPUT_BUFFERS>
 ...
 <MAIN_CODE>
 for(i=0; i<128; i++) {

 if(IT_OUT(buffer_no)) {
 KrnOverflow("blockname",buffer_no);
 return(99);
 }

 value = yout(2) + 0.5*yout(1);
 yout(0)= value;
 }
 </MAIN_CODE>

If the buffer is full, IT_OUT(0) will automatically allocate more cells to
the buffer. Note that buffers have a preset maximum length. If too many
samples are placed on a buffer, the program will be suspended in an
awkward state. In Capsim a block developer can check to see if by
placing the sample on the buffer it will exceed its maximum length and
can let the block return, so that other blocks have a chance to consume the
outputted samples. This problem is avoided by proper use of Capsim and
only occurs in huge simulations with multi-rate sampling. It is easily
avoided by using pacers described in a separate Capsim application note.
In fact, most Capsim source blocks are supplied with pacing capability
built in.

Custom Capsim® 56

4.3.2 Buffer Types and How to Use Them

Capsim is supplied with built in support for the following buffer types.
Other types can be added by the user. The procedure will be explained in
the next section.

Buffer Type Input Output Comments
float INF(#buff,delay) OUTF(#buff,delay) floating point (32 bit)
double IND(#buff,delay) OUTD(#buff,delay) double precision(64

bit)
char INC(#buff,delay) OUTC(#buff,delay) character (8bit)
int INI(#buff,delay) OUTI(#buff,delay) integer (32 bit)
doublePrecInt INDI(#buff,delay) OUTDI(#buff,delay

)
typedef struct {
 long int
 lowWord;
 long int
 highWord;
} doublePrecInt;

complex INCX(#buff,delay) OUTCX(#buff,dela
y)

typedef struct {
 float re;
 float im;
} complex;

The following examples show how these buffers are used. The first
example is the complex conjugate block. This blocks accepts complex
input samples, conjugates them and outputs them to as many output
buffers that are connected to the block (auto fan-out).

Note that for all buffers except for the default buffer float, the cell size
must be set to the size of the buffer type. This is accomplished using the
function:

 SET_CELLSIZE_IN(inputBufferNumber,sizeof(complex));
and
 SET_CELLSIZE_OUT(outputBufferNumber,sizeof(complex));

<BLOCK>
<BLOCK_NAME> cxconj </BLOCK_NAME>

<COMMENTS>
<![CDATA[

Custom Capsim® 57

/* cxconj.s */
/***

 cxconj()
**

Function has a single complex input buffer, and outputs
the conjugate of each complex input sample to
an arbitrary number of complex output buffers.

DESCRIPTION
Function has a single complex input buffer, and outputs
the conjugate of each complex input sample to
an arbitrary number of complex output buffers.
*/

]]>
</COMMENTS>

<DESC_SHORT>
Function has a single complex input buffer, and outputs the
conjugate of each complex input sample to an arbitrary number of
complex output buffers.
</DESC_SHORT>

<STATES>
 <STATE>
 <TYPE>int</TYPE>
 <NAME>numOutBuffers</NAME>
 </STATE>
</STATES>

<DECLARATIONS>

 int numberOfSamples;
 int i;
 complex val;

</DECLARATIONS>

<INPUT_BUFFERS>
 <BUFFER>
 <TYPE>complex</TYPE>
 <NAME>x</NAME>
 </BUFFER>
</INPUT_BUFFERS>

<INIT_CODE>
<![CDATA[

 /* note and store the number of output buffers */
 if((numOutBuffers = NO_OUTPUT_BUFFERS()) <= 0) {
 fprintf(stderr,"node: no output buffers\n");
 return(1); /* no output buffers */
 }
 SET_CELL_SIZE_IN(0,sizeof(complex));
 for (i=0; i<numOutBuffers; i++)
 SET_CELL_SIZE_OUT(i,sizeof(complex));

]]>
</INIT_CODE>

Custom Capsim® 58

<MAIN_CODE>
<![CDATA[
 for(numberOfSamples=MIN_AVAIL();
 numberOfSamples >0; --numberOfSamples) {
 IT_IN(0);
 for(i=0;i<numOutBuffers;++i) {
 if(IT_OUT(i)) {
 KrnOverflow("cxconj",i);
 return(99);
 }
 val=x(0);
 val.im = - val.im;
 OUTCX(i,0) = val;
 }
 }

 return(0); /* input buffer empty */

]]>
</MAIN_CODE>

<WRAPUP_CODE>
</WRAPUP_CODE>

</BLOCK>

The next example shows how a single block can support a number of input
buffers. The type of buffer is specified as a parameter, and the block
adjusts its behavior depending on the buffer type. A good example of this
is the spectrum probe. We would like to use the same probe for floating
point, double precision, integer, or complex buffers. The following code
fragments illustrate the technique:

<PARAMETERS>
...
 <PARAM>
 <DEF>Buffer type:0= Float,1= Complex, 2=Integer</DEF>
 <TYPE> int </TYPE>
 <NAME> bufferType </NAME>
 <VALUE> 0 </VALUE>
 </PARAM>

</PARAMETERS>

<INIT_CODE>
<![CDATA[
 ...
switch(bufferType) {
 case COMPLEX_BUFFER:
 SET_CELLSIZE_IN(0,sizeof(complex));
 if(numberOutputBuffers == 1)
 SET_CELLSIZE_OUT (0,sizeof(complex));
 break;
 case FLOAT_BUFFER:
 SET_CELLSIZE_IN(0,sizeof(float));
 if(numberOutputBuffers == 1)

Custom Capsim® 59

 SET_CELLSIZE_OUT (0,sizeof(float));
 break;
 case INTEGER_BUFFER:
 SET_CELLSIZE_IN(0,sizeof(int));
 if(numberOutputBuffers == 1)
 SET_CELLSIZE_OUT(0,sizeof(int));
 break;
 default:
 fprintf(stderr,"Bad buffer type specified in
spectrum \n");
 return(4);
 break;
}

 ...
]]>
</INIT_CODE>

<MAIN_CODE>
<![CDATA[
for(samples = MIN_AVAIL(); samples > 0; --samples) {
 /*
 * feed all input buffer samples to the output
buffers
 */
 for(i=0; i<numberInputBuffers; ++i) {
 IT_IN(i);
 if(numberOutputBuffers > i) {
 if(IT_OUT(i)) {
 KrnOverflow("cxconj",i);
 return(99);
 }

 switch(bufferType) {
 case COMPLEX_BUFFER:
 OUTCX(i,0) = INCX(i,0);
 break;
 case INTEGER_BUFFER:
 OUTI(i,0) = INI(i,0);
 break;
 case FLOAT_BUFFER:
 OUTF(i,0) = INF(i,0);
 break;
 }

 }
 }
 ...
}
]]>
</MAIN_CODE>

In the above code, note that we first check to see if an output buffer is
connected before we change its cell size. Otherwise we will crash the
program since we are accessing invalid memory (your favorite

Custom Capsim® 60

segmentation error message). The constants COMPLEX_BUFFER,
INTEGER_BUFFER, and FLOAT_BUFFER are defined in the
krn_blocks.h header file which is included in the generated C code by
blockgen.xsl .

Blocks can have mixed buffers connected to them. For example you can
combine two real channels to form a single complex output channel.
Output buffers can also be mixed.

The above examples serve to pave the way for you to write blocks that use
the built in Capsim buffer types. In the next section, we will show you
how to add your own buffer types to Capsim.

Custom Capsim® 61

4.3.3 Defining New Buffer Types

You can create new buffer types by writing an include file for blocks that
you develop. Later, as the buffers have been tested, you can make them
globally accessible to all block developers by adding the contents of the
include file to the krn_blocks.h include file in the $CAPSIM/include
directory. This include file is automatically placed in the C code generated
by blockgen.xsl.

To illustrate the procedure we will create a complex buffer type. First you
need to define a structure for the complex data type:

typedef struct {
 float re;
 float im;
} complex;

Next we define the macro for inputting a complex value from the buffer.

#define INCX(BUFFER_NO,DELAY) \
 *(complex *)buffer_access(pblock->pin_buffer[BUFFER_NO],
 1,DELAY)

Finally we define the macro used to place a complex value on the output
buffer.

#define OUTCX(BUFFER_NO,DELAY) \
 *(complex *)buffer_access(pblock->pout_buffer[BUFFER_NO],
 0,DELAY)

That's all folks! What you need to do is make sure that you set the cell size
to the size of the new data structure. See section 4.3.1.

Complex buffers may be defined in the input_buffer section or
output_buffer section. Below we provide an example for using the
complex buffer. Suppose that the include file we created is called
"complex.h".

<BLOCK>
<COMMENT>
/**

 cxmakecx()

 Inputs: one or two real channels

 Outputs: the complex channel

Custom Capsim® 62

 Parameters: None

**

This block creates a complex buffer from one or two input
buffers.
If one input buffer(buffer 0) is connected, it is assumed
to be the real part.
The imaginary part of the complex output is set to zero.
If two input channels exist then the second channel (buffer
1) is assumed to be
the imaginary part of the complex output sample.

Programmer: Sasan Ardalan
Date: September 4, 1991

*/
</COMMENT>

<INCLUDES>
<![CDATA[
#include <math.h>
#include "complex.h"

]]>
</INCLUDES>

<STATES>
 <STATE>
 <TYPE> int </TYPE>
 <NAME> numOutBuffers </NAME>
 </STATE>
 <STATE>
 <TYPE> int </TYPE>
 <NAME> numberInBuffers </NAME>
 </STATE>
</STATES>

<DECLARATIONS>
 int no_samples;
 float a,b;
 int i;
 complex calc;
</DECLARATIONS>

<INIT_CODE>
<![CDATA[

 /* store as state the number of input/output buffers
*/
 if((numberInBuffers = NO_INPUT_BUFFERS()) < 1) {
 fprintf(stderr,"cxmakecx: no input
buffers\n");
 return(2);

Custom Capsim® 63

 }
 if(numberInBuffers >2) {
 fprintf(stderr,"cxmakecx: too many inputs
connected\n");
 return(3);
 }
 if((numOutBuffers = no_output_buffers()) < 1) {
 fprintf(stderr,"cxmakecx: no output
buffers\n");
 return(4);
 }
 /*
 * Note that we set the cell size for the output
buffer since it is complex
 */
 for (i=0; i<numOutBuffers; i++)
 SET_CELLSIZE_OUT(i,sizeof(complex));

]]>
</INIT_CODE>

<MAIN_CODE>
<![CDATA[

 /* note the minimum number of samples on the */
 /* input buffers and iterate that many times */

 for(no_samples=(MIN_AVAIL());no_samples >0; --
no_samples)

 {
 if(numberInBuffers == 1) {
 /*
 * only one input buffer connected
 * get the sample and set imaginary part
to zero
 */
 IT_IN(0);
 a = INF(0,0);
 b=0.0;

 } else {
 /*
 * two input buffers connected
 */
 IT_IN(0);
 a = INF(0,0);
 IT_IN1);
 b = INF(1,0);
 }

 for(i=0; i<numOutBuffers; i++) {
 /*
 * form complex sample and output on all
connected

Custom Capsim® 64

 * output buffers
 */
 if(IT_OUT(i)) {
 KrnOverflow("cxconj",i);
 return(99);
 }

 calc.re = a;
 calc.im = b;
 OUTCX(i,0) = calc;
 }

 }
 return(0);
]]>
</MAIN_CODE>
</BLOCK>

Once you are ready to make your buffer types available to all users, edit
the krn_stars.h file in the $CAPSIM/include directory and incorporate
your definitions.

Using this feature of Capsim, you can create buffers for passing frames of
images, or packets. For example, you can create the data structure,

typedef struct {
 char **image_PP;
 int width;
 int height;
} image;

where image_PP is a double pointer to the 8 bit per pixel image. By
passing a pointer, you avoid sending the whole image over the buffer
pixel by pixel.

4.4 Buffer Size Management

The main mechanism for placing samples on a buffer is to first call
IT_OUT(). If IT_OUT(bufferNumber) returns a 1, then the maximum
number of cells has been exceeded on that buffer. That is, an overflow has
happened. You have two choices. One is to return from the block with a
non zero error code. This will cause the kernel to stop the simulation and
display an error message.(use a call to KrnOverflow("blockname",
bufferNumber) prior to returning. This will print an understandable error
message. The second choice, is to return with a zero. This does not cause
the kernel to stop. It will call the other blocks which will hopefully
consume samples on the buffer. This in turn will free some space. So if the

Custom Capsim® 65

block stored the sample that was to be outputted, it can safely place it on
the buffer prior to the new samples. If a block is written in this way, then
all blocks have to use this method. In this way buffers will never exceed
the maximum. In fact you can set the maximum number of segments to 4
the minimum value and it will not be exceeded. That is CAPSIM can
control and bound the size of buffers. Further more, you can limit blocks
to outputting one sample at a time. That is you can also reduce the
segment size. Use the following CAPSIM line commands:

 setmaxseg MAXIMUM_NUMBER_SEGMENTS

by default MAXIMUM_NUMBER_SEGMENTS is 1000. Each segment
is 128 cells be default. The size of the segment can be changed by:

 setcellinc CELL_INCREMENT

Note that you should make sure that blocks output a maximum of
CELL_INCREMENT samples each time they are called so that it will be
unnecessary for the kernel to increase the buffer size. Use
NUMBER_SAMPLES for the value (this is defined to be the cell
increment through a global variable). For compatibility you can also use
NOSAMPLES. See the source blocks.

Custom Capsim® 66

5 Appendix A

For reference, the include file "stars.h" in the $CAPSIM/include directory
is shown in this appendix. This file is included with all blocks by
blockgen.xsl .

/*
 Capsim (r) Text Mode Kernel (TMK)
 Copyright (C) 1989-2002 XCAD Corporation

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later
version.

 This library is distributed in the hope that it will be
useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General
Public
 License along with this library; if not, write to the Free
Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

 http://www.xcad.com
 XCAD Corporation
 Raleigh, North Carolina
*/

/* blocks.h */
/***

 INCLUDE FILE FOR BLOCKS

**

This file should be included in all CAPSIM user block routines --
It defines macro substitutions
*/

#define IN 0
#define OUT 1

#define COMPLEX

Custom Capsim® 67

typedef struct {
 float re;
 float im;
} complex;

typedef struct {
 long int lowWord;
 long int highWord;
} doublePrecInt;

typedef struct {
 int width;
 int height;
 float** image_PP;
} image_t, *image_Pt;

POINTER BufferAdd(),BufferAccess();

#define AVAIL(BUFFER_NO) \
 BufferLength(block_P->inBuffer_P[BUFFER_NO])

#define MIN_AVAIL() MinimumSamples(block_P)

#define IT_IN(BUFFER_NO) \
 IncRdPtr(block_P->inBuffer_P[BUFFER_NO])

#define PIN(BUFFER_NO,DELAY) \
 BufferAccess(block_P->inBuffer_P[BUFFER_NO],1,DELAY)

#define INF(BUFFER_NO,DELAY) \
 *(float *)BufferAccess(block_P-
>inBuffer_P[BUFFER_NO],1,DELAY)

#define INI(BUFFER_NO,DELAY) \
 *(int *)BufferAccess(block_P-
>inBuffer_P[BUFFER_NO],1,DELAY)

#define INC(BUFFER_NO,DELAY) \
 *(char *)BufferAccess(block_P-
>inBuffer_P[BUFFER_NO],1,DELAY)

#define IND(BUFFER_NO,DELAY) \
 *(double *)BufferAccess(block_P-
>inBuffer_P[BUFFER_NO],1,DELAY)

#define INCX(BUFFER_NO,DELAY) \
 *(complex *)BufferAccess(block_P-
>inBuffer_P[BUFFER_NO],1,DELAY)

#define INDI(BUFFER_NO,DELAY) \
 *(doublePrecInt *)BufferAccess(block_P-
>inBuffer_P[BUFFER_NO],1,DELAY)

#define INIMAGE(BUFFER_NO,DELAY) \
 *(image_t *)BufferAccess(block_P-
>inBuffer_P[BUFFER_NO],1,DELAY)

#define IT_OUT(BUFFER_NO) \
 IncWrPtr(block_P->outBuffer_P[BUFFER_NO])

#define POUT(BUFFER_NO,DELAY) \
 BufferAccess(block_P->outBuffer_P[BUFFER_NO],0,DELAY)

Custom Capsim® 68

#define OUTF(BUFFER_NO,DELAY) \
 *(float *)BufferAccess(block_P-
>outBuffer_P[BUFFER_NO],0,DELAY)

#define OUTI(BUFFER_NO,DELAY) \
 *(int *)BufferAccess(block_P-
>outBuffer_P[BUFFER_NO],0,DELAY)

#define OUTC(BUFFER_NO,DELAY) \
 *(char *)BufferAccess(block_P-
>outBuffer_P[BUFFER_NO],0,DELAY)

#define OUTD(BUFFER_NO,DELAY) \
 *(double *)BufferAccess(block_P-
>outBuffer_P[BUFFER_NO],0,DELAY)

#define OUTCX(BUFFER_NO,DELAY) \
 *(complex *)BufferAccess(block_P-
>outBuffer_P[BUFFER_NO],0,DELAY)

#define OUTDI(BUFFER_NO,DELAY) \
 *(doublePrecInt *)BufferAccess(block_P-
>outBuffer_P[BUFFER_NO],0,DELAY)

#define OUTIMAGE(BUFFER_NO,DELAY) \
 *(image_t *)BufferAccess(block_P-
>outBuffer_P[BUFFER_NO],0,DELAY)

#define SNAME(BUFFER_NO) (block_P->signalName[BUFFER_NO])

#define BLOCK_NAME (block_P->name)

#define SET_DMIN_IN(BUFFER_NO,DELAY) \
 delay_min(block_P->inBuffer_P[BUFFER_NO],DELAY)

#define SET_DMAX_IN(BUFFER_NO,DELAY) \
 delay_max(block_P->inBuffer_P[BUFFER_NO],DELAY)

#define SET_DMAX_OUT(BUFFER_NO,DELAY) \
 delay_max(block_P->outBuffer_P[BUFFER_NO],DELAY)

#define SET_CELL_SIZE_IN(BUFFER_NO,SIZE) \
 CellSize(block_P->inBuffer_P[BUFFER_NO],SIZE)

#define SET_CELL_SIZE_OUT(BUFFER_NO,SIZE) \
 CellSize(block_P->outBuffer_P[BUFFER_NO],SIZE)

#define NO_OUTPUT_BUFFERS() (block_P->numberOutBuffers)

#define NO_INPUT_BUFFERS() (block_P->numberInBuffers)

/* the following are for examination of the buffers during
debugging */
#define LOOK_OUT(BUFFER_NO) \
 ExamineBuffer(block_P->outBuffer_P[BUFFER_NO])

#define LOOK_IN(BUFFER_NO) \
 ExamineBuffer(block_P->inBuffer_P[BUFFER_NO])

extern double drand48();

Custom Capsim® 69

6 Appendix B

The full source code for convolve.s.

<BLOCK>
<LICENSE>
/* Capsim (r) Text Mode Kernel (TMK) Star Library (Blocks)
 Copyright (C) 1989-2002 XCAD Corporation

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

 http://www.xcad.com
 XCAD Corporation
 Raleigh, North Carolina */
</LICENSE>
<BLOCK_NAME> convolve </BLOCK_NAME>

<COMMENTS>
<![CDATA[

/* convolve.s */
/***
 convolve()
**
This star convolves the input samples with the impulse response (finite
duration, FIR) given in a file.
Param: 1 - (file) File with the impulse response samples
 2 - (int) N number of samples in the impulse response.

This star convolves the input samples with the impulse response (finite
duration, FIR) given in a file.
Param: 1 - (file) File with the impulse response samples
 2 - (int) N number of samples in the impulse response.

Date: September 23, 1988
Programmer: Adali Tulay

*/

]]>
</COMMENTS>

<DESC_SHORT>
This star convolves the input samples with the impulse response (finite
duration, FIR) given in a file.
</DESC_SHORT>

<INCLUDES>
<![CDATA[

Custom Capsim® 70

#include <math.h>
#include <stdio.h>

]]>
</INCLUDES>

<DEFINES>

#define PI 3.1415926

</DEFINES>

<STATES>
 <STATE>
 <TYPE> float* </TYPE>
 <NAME> x_P </NAME>
 </STATE>
 <STATE>
 <TYPE> float* </TYPE>
 <NAME> h_P </NAME>
 </STATE>
</STATES>

<DECLARATIONS>

 int i;
 int j;
 float tmp1,tmp2;
 float sum;
 FILE *fopen();
 FILE *imp_F;

</DECLARATIONS>

<PARAMETERS>
<PARAM>
 <DEF>File name containing impulse response samples</DEF>
 <TYPE> file </TYPE>
 <NAME> filename </NAME>
 <VALUE></VALUE>
</PARAM>
<PARAM>
 <DEF>Order of impulse response</DEF>
 <TYPE> int </TYPE>
 <NAME> N </NAME>
 <VALUE></VALUE>
</PARAM>
</PARAMETERS>

<INPUT_BUFFERS>
 <BUFFER>
 <TYPE> float </TYPE>
 <NAME> x </NAME>
 </BUFFER>
</INPUT_BUFFERS>

<OUTPUT_BUFFERS>

Custom Capsim® 71

 <BUFFER>
 <TYPE> float </TYPE>
 <NAME> y </NAME>
 </BUFFER>
</OUTPUT_BUFFERS>

<INIT_CODE>
<![CDATA[

 /*
 * Allocate memory and return pointers for tapped delay line x_P and
 * array containing impulse response samples, h_P.
 *
 */
 if((x_P = (float*)calloc(N,sizeof(float))) == NULL ||
 (h_P = (float*)calloc(N,sizeof(float))) == NULL) {
 fprintf(stderr,"convolve: can't allocate work space\n");
 return(4);
 }
 /*
 * open file containing impulse response samples. Check
 * to see if it exists.
 *
 */
 if((imp_F = fopen(filename,"r")) == NULL) {
 fprintf(stderr,"Convolve could not be opened file was %s \n",
 filename);
 return(4);
 }
 /*
 * Read in the impulse response samples into the array
 * and initialize the tapped delay line to zero.
 *
 */
 for (i=0; i<N; i++) {
 x_P[i]= 0.0;
 fscanf(imp_F,"%f",&h_P[i]);
 }

]]>
</INIT_CODE>

<MAIN_CODE>
<![CDATA[

 while(IT_IN(0)){
 /*
 * Shift input sample into tapped delay line
 */
 tmp2=x(0);
 for(i=0; i<N; i++) {
 tmp1=x_P[i];
 x_P[i]=tmp2;
 tmp2=tmp1;
 }
 /*
 * Compute inner product
 */
 sum = 0.0;
 for (i=0; i<N; i++) {
 sum += x_P[i]*h_P[i];
 }
 if(IT_OUT(0)) {
 KrnOverflow("convolve",0);

Custom Capsim® 72

 return(99);
 }
 /*
 * set output buffer to response result
 */
 y(0) = sum;
 }

]]>
</MAIN_CODE>

<WRAPUP_CODE>
<![CDATA[

 free(x_P); free(h_P);

]]>
</WRAPUP_CODE>

</BLOCK>

7 Appendix C

Here is an example initialization and use for the function parameter:

<PARAMETERS>

 <PARAM>
 <DEF> Impulse Response Function</DEF>
 <TYPE> function </TYPE>
 <NAME> impulse_response </NAME>
 <VALUE> "hfilt" </VALUE>
 </PARAM>

</PARAMETERS>

<DECLARATIONS>
/*
 * PFI is a typedef for function returning an integer
 * defined in "krn_capsim.h"
 */
 PFI function,funct_list();
 int hfilt();
</DECLARATIONS>

<INIT_CODE>
 if(strcmp(impulse_response,"hfilt") != 0) {

Custom Capsim® 73

 if((function=funct_list(impulse_response))==NULL)
 return(1);
 }
 else function = hfilt;

</INIT_CODE>

<MAIN_CODE>
 /* call the function returning the impulse response
*/
 ... = (*function)(...);
</MAIN_CODE>

In this example, the default function hfilt() is declared right inside the
BLOCK routine to be a function pointer, but any other function name
passed as a parameter is converted to a function pointer by
BLOCKGEN.XSL internally.

